Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
Sci Rep ; 12(1): 22389, 2022 12 27.
Article in English | MEDLINE | ID: covidwho-2186041

ABSTRACT

Biofilm (BF) growth is believed to play a major role in the development of ventilator-associated pneumonia (VAP) in the intensive care unit. Despite concerted efforts to understand the potential implication of endotracheal tube (ETT)-BF dispersal, clinically relevant data are lacking to better characterize the impact of its mesostructure and microbiological singularity on the occurrence of VAP. We conducted a multicenter, retrospective observational study during the third wave of the COVID-19 pandemic, between March and May 2021. In total, 64 ETTs collected from 61 patients were included in the present BIOPAVIR study. Confocal microscopy acquisitions revealed two main morphological aspects of ETT-deposited BF: (1) a thin, continuous ribbon-shaped aspect, less likely monobacterial and predominantly associated with Enterobacter spp., Streptococcus pneumoniae or Viridans streptococci, and (2) a thicker, discontinuous, mushroom-shaped appearance, more likely characterized by the association of bacterial and fungal species in respiratory samples. The microbiological characterization of ETT-deposited BF found higher acquired resistance in more than 80% of analyzed BF phenotypes, compared to other colonization sites from the patient's environment. These findings reveal BF as a singular microbiological compartment, and are of added clinical value, with a view to future ETT-deposited BF-based antimicrobial stewardship in critically ill patients. Trial registration NCT04926493. Retrospectively registered 15 June 2021.


Subject(s)
COVID-19 , Pneumonia, Ventilator-Associated , Humans , Critical Illness , Pandemics , COVID-19/epidemiology , Intubation, Intratracheal/methods , Pneumonia, Ventilator-Associated/epidemiology , Biofilms , Enterobacter
2.
BMC Infect Dis ; 22(1): 205, 2022 Mar 02.
Article in English | MEDLINE | ID: covidwho-1779611

ABSTRACT

OBJECTIVE: Early identification of sepsis is mandatory. However, clinical presentation is sometimes misleading given the lack of infection signs. The objective of the study was to evaluate the impact on the 28-day mortality of the so-called "vague" presentation of sepsis. DESIGN: Single centre retrospective observational study. SETTING: One teaching hospital Intensive Care Unit. SUBJECTS: All the patients who presented at the Emergency Department (ED) and were thereafter admitted to the Intensive Care Unit (ICU) with a final diagnosis of sepsis were included in this retrospective observational three-year study. They were classified as having exhibited either "vague" or explicit presentation at the ED according to previously suggested criteria. Baseline characteristics, infection main features and sepsis management were compared. The impact of a vague presentation on 28-day mortality was then evaluated. INTERVENTIONS: None. MEASUREMENTS AND MAIN RESULTS: Among the 348 included patients, 103 (29.6%) had a vague sepsis presentation. Underlying chronic diseases were more likely in those patients [e.g., peripheral arterial occlusive disease: adjusted odd ratio (aOR) = 2.01, (1.08-3.77) 95% confidence interval (CI); p = 0.028], but organ failure was less likely at the ED [SOFA score value: 4.7 (3.2) vs. 5.2 (3.1), p = 0.09]. In contrast, 28-day mortality was higher in the vague presentation group (40.8% vs. 26.9%, p = 0.011), along with longer time-to-diagnosis [18 (31) vs. 4 (11) h, p < 0.001], time-to-antibiotics [20 (32) vs. 7 (12) h, p < 0.001] and time to ICU admission [71 (159) vs. 24 (69) h, p < 0.001]. Whatever, such a vague presentation independently predicted 28-day mortality [aOR = 2.14 (1.24-3.68) 95% CI; p = 0.006]. CONCLUSIONS: Almost one third of septic patient requiring ICU had a vague presentation at the ED. Despite an apparent lower level of severity when initially assessed, those patients had an increased risk of mortality that could not be fully explained by delayed diagnosis and management of sepsis.


Subject(s)
Intensive Care Units , Sepsis , Emergency Service, Hospital , Hospital Mortality , Hospitalization , Humans , Prognosis , Retrospective Studies , Sepsis/diagnosis
3.
Front Med (Lausanne) ; 8: 675191, 2021.
Article in English | MEDLINE | ID: covidwho-1369670

ABSTRACT

Rationale: COVID-19 displays distinct characteristics that suggest a unique pathogenesis. The objective of this study was to compare biomarkers of coagulopathy and outcomes in COVID-19 and non-COVID-19 patients with severe pneumonia. Methods: Thirty-six non-COVID-19 and 27 COVID-19 non-immunocompromised patients with severe pneumonia were prospectively enrolled, most requiring intensive care. Clinical and biological characteristics (including plasma biomarkers of coagulopathy) were compared. Results: At similar baseline severity, COVID-19 patients required mechanical ventilation (MV) for significantly longer than non-COVID-19 patients (p = 0.0049) and more frequently developed venous thrombotic complications (p = 0.031). COVID-19 patients had significantly higher plasma concentrations of soluble VCAM1 (sVCAM1) (5,739 ± 3,293 vs. 3,700 ± 2,124 ng/ml; p = 0.009), but lower levels of D-dimers, vWF-A2, sICAM1, sTREM1, VEGF, and P-selectin, compared to non-COVID-19 patients. Principal component analysis identified two main patterns, with a clear distinction between non-COVID-19 and COVID-19 patients. Multivariable regression analysis confirmed that sVCAM1 rising levels were independently associated with a longer duration of MV. Finally, we identified close correlations between sVCAM1 and some features of COVID-19 immune dysregulation (ie. CXCL10, GM-CSF, and IL-10). Conclusion: We identified specific features of the coagulopathy signature in severe COVID-19 patients, with higher plasma sVCAM1 levels, that were independently associated with the longer duration of mechanical ventilation. Clinical Trial Registration:ClinicalTrials.gov, identifier: NCT03505281.

4.
Sci Rep ; 11(1): 10824, 2021 05 24.
Article in English | MEDLINE | ID: covidwho-1242049

ABSTRACT

COVID-19 pneumonia has specific features and outcomes that suggests a unique immunopathogenesis. Severe forms of COVID-19 appear to be more frequent in obese patients, but an association with metabolic disorders is not established. Here, we focused on lipoprotein metabolism in patients hospitalized for severe pneumonia, depending on COVID-19 status. Thirty-four non-COVID-19 and 27 COVID-19 patients with severe pneumonia were enrolled. Most of them required intensive care. Plasma lipid levels, lipoprotein metabolism, and clinical and biological (including plasma cytokines) features were assessed. Despite similar initial metabolic comorbidities and respiratory severity, COVID-19 patients displayed a lower acute phase response but higher plasmatic concentrations of non-esterified fatty acids (NEFAs). NEFA profiling was characterised by higher level of polyunsaturated NEFAs (mainly linoleic and arachidonic acids) in COVID-19 patients. Multivariable analysis showed that among severe pneumonia, COVID-19-associated pneumonia was associated with higher NEFAs, lower apolipoprotein E and lower high-density lipoprotein cholesterol concentrations, independently of body mass index, sequential organ failure (SOFA) score, and C-reactive protein levels. NEFAs and PUFAs concentrations were negatively correlated with the number of ventilator-free days. Among hospitalized patients with severe pneumonia, COVID-19 is independently associated with higher NEFAs (mainly linoleic and arachidonic acids) and lower apolipoprotein E and HDL concentrations. These features might act as mediators in COVID-19 pathogenesis and emerge as new therapeutic targets. Further investigations are required to define the role of NEFAs in the pathogenesis and the dysregulated immune response associated with COVID-19.Trial registration: NCT04435223.


Subject(s)
COVID-19/pathology , Fatty Acids, Nonesterified/blood , Aged , Apolipoproteins E/blood , Arachidonic Acids/blood , COVID-19/blood , COVID-19/virology , Cholesterol, HDL/blood , Cytokines/blood , Female , Humans , Linoleic Acids/blood , Male , Middle Aged , Principal Component Analysis , SARS-CoV-2/isolation & purification , Severity of Illness Index
8.
J Transl Med ; 18(1): 457, 2020 12 03.
Article in English | MEDLINE | ID: covidwho-958039

ABSTRACT

BACKGROUND: Although immune modulation is a promising therapeutic avenue in coronavirus disease 2019 (COVID-19), the most relevant targets remain to be found. COVID-19 has peculiar characteristics and outcomes, suggesting a unique immunopathogenesis. METHODS: Thirty-six immunocompetent non-COVID-19 and 27 COVID-19 patients with severe pneumonia were prospectively enrolled in a single center, most requiring intensive care. Clinical and biological characteristics (including T cell phenotype and function and plasma concentrations of 30 cytokines) and outcomes were compared. RESULTS: At similar baseline respiratory severity, COVID-19 patients required mechanical ventilation for significantly longer than non-COVID-19 patients (15 [7-22] vs. 4 (0-15) days; p = 0.0049). COVID-19 patients had lower levels of most classical inflammatory cytokines (G-CSF, CCL20, IL-1ß, IL-2, IL-6, IL-8, IL-15, TNF-α, TGF-ß), but higher plasma concentrations of CXCL10, GM-CSF and CCL5, compared to non-COVID-19 patients. COVID-19 patients displayed similar T-cell exhaustion to non-COVID-19 patients, but with a more unbalanced inflammatory/anti-inflammatory cytokine response (IL-6/IL-10 and TNF-α/IL-10 ratios). Principal component analysis identified two main patterns, with a clear distinction between non-COVID-19 and COVID-19 patients. Multivariate regression analysis confirmed that GM-CSF, CXCL10 and IL-10 levels were independently associated with the duration of mechanical ventilation. CONCLUSION: We identified a unique cytokine response, with higher plasma GM-CSF and CXCL10 in COVID-19 patients that were independently associated with the longer duration of mechanical ventilation. These cytokines could represent the dysregulated immune response in severe COVID-19, as well as promising therapeutic targets. ClinicalTrials.gov: NCT03505281.


Subject(s)
COVID-19/diagnosis , COVID-19/immunology , Immunity, Innate/physiology , Pneumonia, Viral/diagnosis , Pneumonia, Viral/immunology , Aged , Aged, 80 and over , COVID-19/mortality , COVID-19/therapy , Critical Care , Female , France/epidemiology , Humans , Immunophenotyping , Lymphocyte Activation/physiology , Male , Middle Aged , Pneumonia, Viral/mortality , Pneumonia, Viral/therapy , Prognosis , Respiration, Artificial , SARS-CoV-2/physiology , Severity of Illness Index
9.
Crit Care ; 24(1): 632, 2020 11 02.
Article in English | MEDLINE | ID: covidwho-901906

ABSTRACT

BACKGROUND: COVID-19-related ARDS has unique features when compared with ARDS from other origins, suggesting a distinctive inflammatory pathogenesis. Data regarding the host response within the lung are sparse. The objective is to compare alveolar and systemic inflammation response patterns, mitochondrial alarmin release, and outcomes according to ARDS etiology (i.e., COVID-19 vs. non-COVID-19). METHODS: Bronchoalveolar lavage fluid and plasma were obtained from 7 control, 7 non-COVID-19 ARDS, and 14 COVID-19 ARDS patients. Clinical data, plasma, and epithelial lining fluid (ELF) concentrations of 45 inflammatory mediators and cell-free mitochondrial DNA were measured and compared. RESULTS: COVID-19 ARDS patients required mechanical ventilation (MV) for significantly longer, even after adjustment for potential confounders. There was a trend toward higher concentrations of plasma CCL5, CXCL2, CXCL10, CD40 ligand, IL-10, and GM-CSF, and ELF concentrations of CXCL1, CXCL10, granzyme B, TRAIL, and EGF in the COVID-19 ARDS group compared with the non-COVID-19 ARDS group. Plasma and ELF CXCL10 concentrations were independently associated with the number of ventilator-free days, without correlation between ELF CXCL-10 and viral load. Mitochondrial DNA plasma and ELF concentrations were elevated in all ARDS patients, with no differences between the two groups. ELF concentrations of mitochondrial DNA were correlated with alveolar cell counts, as well as IL-8 and IL-1ß concentrations. CONCLUSION: CXCL10 could be one key mediator involved in the dysregulated immune response. It should be evaluated as a candidate biomarker that may predict the duration of MV in COVID-19 ARDS patients. Targeting the CXCL10-CXCR3 axis could also be considered as a new therapeutic approach. TRIAL REGISTRATION: ClinicalTrials.gov, NCT03955887.


Subject(s)
Chemokine CXCL10/metabolism , Coronavirus Infections/complications , Pneumonia, Viral/complications , Respiration, Artificial/statistics & numerical data , Respiratory Distress Syndrome/etiology , Respiratory Distress Syndrome/therapy , Adult , Aged , COVID-19 , Case-Control Studies , Female , Humans , Male , Middle Aged , Pandemics , Prospective Studies , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL